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Stepwise construction of a cross-shaped covalent
assembly of dendrimers
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Abstract

A methodology for the stepwise construction of shape-persistent assemblies using snowflake-shaped dendrimers as the key modular
building blocks was described. The Sonogashira coupling reaction of A3B-type Zn–porphyrin with A4-type free-base porphyrin afforded
a cross-shaped covalent assembly. Intramolecular singlet energy transfer from peripheral Zn–porphyrin core to a free-base porphyrin
core was observed.
� 2008 Elsevier Ltd. All rights reserved.
In past decades, dendrimers have attracted considerable
attention as nanoscale molecular materials due to their
novel properties and many promising applications.1 For
example, the well-defined three-dimensional structure of
dendrimers enable them to act as extremely attractive
building blocks for the construction of the molecular-scale
devices and machines where a huge number of functional
groups are organized in a specific three-dimensional
arrangement. Although several studies have been con-
ducted on the assemblies of dendrimers, most of them
employ flexible structures and/or isotropic assembling pro-
cesses.2 Therefore, these methods do not meet the criteria
for the precise construction of rationally designed nano-
scale architectures using dendritic building blocks. We have
recently reported snowflake-shaped dendrimers containing
rigid linearly conjugated backbones within the dendritic
side chains.3 The rigid backbone serves as a scaffold for
the construction of a well-designed assembly within the
dendritic architecture and as a mediator in both electron-
and energy-transfer processes.4 In this study, we propose
a novel methodology for the stepwise construction of
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shape-persistent assemblies using snowflake-shaped dendri-
mers as the key modular building blocks.

Our assembling method is based on the synthesis of
snowflake-shaped dendrimers that possess the prerequisite
structures to be extended to the designed structures
(Fig. 1).3 Initially, dendrimers with A4- and A3B-type con-
necting terminals with a flat square-arrangement were
designed. These dendrimers could be covalently or non-
covalently connected through the connecting terminals to
furnish A4(A3B)4-type dendritic assemblies. According to
predesigned architectures, the process of binding through
the terminal rigid conjugated backbones ensures the forma-
tion of the shape-persistent5 A4(A3B)4. Here, we report the
Fig. 1. Schematic representation of the method for the construction of the
shape-persistent assembly of snowflake-shaped dendrimers through link-
ages between outer terminals of conjugated chains; white squares: inactive
terminals, arrows: active terminals, black bold rods: conjugated chains.
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preparation of the cross-shaped covalent assembly 1 (Fig. 2)
and the singlet energy transfer from a peripheral Zn–por-
phyrin unit to a central FB (free-base) porphyrin unit.6

These porphyrin units have similar structures to the previ-
ously reported snowflake-shaped dendrimers3 and served
as model compounds of the corresponding dendrimers. Five
porphyrin units in assembly 1 were fixed in a cross-shaped
arrangement where the center-to-center distance between
a central FB and a peripheral Zn–porphyrin is approxi-
mately 4.0 nm, as estimated by MM2 calculations.

The first precursor—A4-type FB porphyrin 2—was syn-
thesized by the Sonogashira coupling reaction of FB por-
phyrin 47 with TBS (tert-butyldimethylsilyl)-terminated
compound 5 under copper-free conditions8 to afford A4-
type porphyrin 6; this was followed by the removal of the
TBS protecting groups to afford 2 in 48% yield in two steps
(Scheme 1). The second precursor—A3B-type Zn–porphy-
rin 3—was prepared from Zn–porphyrin 73c by the repeti-
tion of the cross-coupling reaction and the transformation
of the terminal functional groups as outlined in Scheme 2
to afford 3 in an 18% overall yield. The detailed procedures
are described in Supplementary data.
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Fig. 2. The chemical structure of cross-shaped covalent assembly 1 (C1196H998

and the diagonal phenyl group is approximately 12 nm.
The synthesis of 1 was accomplished by the cross-cou-
pling reaction of 2 with 3 in the following mannar: 2 was
reacted with 4 equiv of 3 under copper-free Sonogashira
coupling conditions at 40 �C for 3 days;8 this was followed
by repeated purification of the crude product by recycling
GPC (gel permeation chromatography) to afford 1 as a
purple solid in 15% yield. Compound 1 was soluble in var-
ious organic solvents such as chloroform, dichlorometh-
ane, THF, and toluene. The NMR signals assigned to the
b-protons of the pyrrole rings in the FB porphyrin and
Zn–porphyrins appeared at d 8.91 (8 H) and 9.01 ppm
(32 H), respectively. The molecular ion peak (MALDI-
TOF-MS) was observed at m/z = 16554 (Calcd av mass:
16552).

The UV–vis absorption spectrum of 1 in THF showed
characteristic bands for the porphyrin units (Soret band:
kmax = 433 nm; Q-bands: kmax = 519, 559, 601, and
649 nm) along with absorption bands due to the branched
benzyl ether chains (kmax = 291 nm) and conjugated chains
(kmax = 346 nm) (Fig. 3). The absorption bands are essen-
tially a superposition of the spectra of the individual den-
drimers 15 (Soret band: kmax = 426 nm; Q-bands: kmax =
O
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Scheme 1. Synthesis of A4-type FB porphyrin 2.
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Fig. 3. Absorption spectra of 1, 15, and 16 measured in THF and
simulated spectrum for 1 obtained from the absorption spectra of 15 and
16 (esim = e15 + 4 � e16).
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Scheme 2. Synthesis of A3B-type FB porphyrin 3.
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518, 554, 595, and 652 nm) and 16 (Soret band: kmax =
432 nm; Q-bands: kmax = 560 and 600 nm). In fact, the
observed spectrum (molar absorptivity (e) scale) of 1 can
be well simulated by the absorption of the components,
e15 + 4 � e16, except for the region 300–400 nm where the
conjugated chain shows absorption. These results indicate
that there is a negligible electronic interaction between
the FB porphyrin core and the peripheral Zn–porphyrin
core in the ground state.
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To evaluate the efficiency of singlet energy transfer from
the peripheral Zn–porphyrin core to the central FB por-
phyrin core, the fluorescence of 1 was studied in degassed
THF (Fig. 4). The quantum yield of fluorescence (kem

max ¼
614; 657; and 719 nm) was determined as Uf = 0.057 at
the excitation wavelength of 571 nm where light is mainly
absorbed by the Zn–porphyrin moieties with the absorp-
tion (I) ratio I (FB porphyrin moiety):I (Zn–porphyrin
moiety) = 1:10.8, as determined from the molar absorptiv-
ity ratio of e15:e16 = 1:2.7 at 571 nm. The observed fluores-
cence can be simulated as a linear combination of the
normalized spectra (kex = 571 nm) of 15 (kem

max ¼ 656 and
720 nm, Uf = 0.121) and 16 (kem

max ¼ 611 and 658 nm,
Uf = 0.040), indicating that the fluorescence of 1 can be
divided into two components with an emission area ratio
of 1.57 (FB porphyrin):1 (Zn–porphyrin) (Fig. 4). There-
fore, the chromophore-dependent quantum yields in 1 are
determined as follows: Uf1FB (FB porphyrin units in
1) = 0.057 � 1.57/2.57 � 11.8/1.0 = 0.41 and Uf1Zn (Zn–
porphyrin units in 1) = 0.057 � 1.0/2.57 � 11.8/10.8 =
0.024. Uf1Zn (0.024) is smaller than Uf16 (0.040), indicating
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Fig. 4. Fluorescence (kexc = 571 nm) spectrum of 1 measured in THF and
simulated spectrum for 1 obtained from the normalized spectra of 15 and
16 (Isim = 0.28 � (I (15) + 2 � I (16))).
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40% quenching in 1. Uf1FB (0.41) is 3.4 times higher than
Uf15 (0.121); this is consistent with an efficient energy trans-
fer.9,10 Energy transfer mechanisms in donor–acceptor sys-
tems bridged with oligo(phenylene–ethylene)s have been
investigated by both experimental and theoretical methods.
These works showed a significant contribution of through-
bond interaction to the energy transfer rate that allowed
effective long-range energy transfer.4d

Comparison of the efficiency of the energy transfer in 1

with a dyad 17 may clarify the effect of the dendritic struc-
ture. The fluorescence spectrum of 17 measured in THF
(kem

max ¼ 606, 653 and 723 nm, Uf = 0.065) can be divided
into FB porphyrin and Zn–porphyrin components with
an emission area ratio of 2.02:1. According to the same
procedure as above, the chromophore-dependent quantum
yields in 17 are calculated as Uf17FB = 0.17 and
Uf17Zn = 0.028. Uf1Zn (0.028) indicates 30% quenching of
Zn–porphyrin fluorescence in 17. The energy transfer in
17 is less effective than in 1. This result showed the den-
dritic structure of 1 is advantageous for efficient light
harvesting.
N

N N

N

tBu tBu

tBu tBu

tBu

tBu
N

HNN

NH

tButBu

tButBu

tBu

tBu

Zn

17
In summary, we have developed a facile methodology
for the stepwise construction of shape-persistent assemblies
with rigid conjugated backbones. Snowflake-shaped den-
drimers can serve as ‘dendritic atoms’ in the presented
assembling process. Namely, each dendrimer has its own
valency and directionality for bonding besides individual
functionalities. The method was successfully applied for
the preparation of cross-shaped covalent assemblies of
snowflake-shaped porphyrins. The fluorescence from the
Zn–porphyrin cores in 1 was partially quenched due to
the energy transfer to the central FB porphyrin core. The
efficiency of energy transfer may be improved by the incor-
poration of a suitable chromophore into a connecting site.
Since many snowflake-shaped porphyrins as well as dendri-
mers with varied properties and geometries of the connect-
ing units are accessible, the presented studies provide a
powerful tool for the construction of a variety of complex
but precisely designed nanoscale architectures.
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